

US Army Corps of Engineers. Vicksburg District

Public Notice

4155 Clay Street Vicksburg, MS 39183-3435 www.mvk.usace.army.mil APPL

APPLICATION NO.: EVALUATOR: PHONE NO.: E-MAIL: DATE: EXPIRATION DATE: MVK-2017-883 Mr. Jason Christy (601) 631-5298 Jason.a.christy@usace.army.mil October 10, 2018 October 31, 2018

Interested parties are hereby notified that the U.S. Army Corps of Engineers, Vicksburg District and the Mississippi Department of Environmental Quality are considering an application for a Department of the Army Permit and State Water Quality Certification for the work described herein. Comments should be forwarded to the Vicksburg District, Attention: CEMVK-OD-F, at the above address, and the Arkansas Department of Environmental Quality, Post Office Box 8913, Little Rock, Arkansas 72219-8913, and must reach these offices by the cited expiration date.

<u>Law Requiring a Permit</u>: Section 404 of the Clean Water Act (33 U.S.C. 1344), which applies to discharges of dredged or fill material into waters of the United States.

<u>Name of Applicant</u>: TW & JG Franzen 1602 Caroll Road Paragould, Arkansas 72450

Location of Work: Section 22, T6S-R4W, Latitude 34.1505, Longitude -91.4248, within the Lower Mill Bayou Watershed, in the Bayou Meto Drainage System (8 digit HUC 08020402) Arkansas County, Arkansas.

Description of Work: (See enclosed map and drawings.)

The following descriptions of the proposed project and associated impacts are based upon information provided by the applicant.

The applicant is applying for a Department of the Army permit to place fill in jurisdictional wetlands for the purpose of constructing a perimeter levee to hold water to be managed as a greentree reservoir.

The levee would be approximately 10 feet in width at the top and 3.5 feet high. The levee would allow stormwater to be held at levels not to exceed 24 inches in depth to create a greentree reservoir, approximately 2.77 acres in size.

Approximately 789 cubic yards of clean fill material would be utilized to construct the proposed levee. In order to construct the levee, approximately 0.1-acre of forested wetland would be filled.

The vegetative communities within the project area are dominated by Black Willow, Willow Oak, Locust, and Swamp Privet. Soils within the project area are dominated by Yorktown Silty Clay.

Upon reviewing this notice, you should write to this office to provide your opinion of the impacts this work will have on the natural and human environment and address any mitigation you believe is necessary to offset these impacts. Other comments are welcome, but the above information will further our review of the applicant's plan as proposed. Comments of a general nature are not as helpful as those specific to the impacts of the subject project.

<u>State Water Quality Permit</u>: The State Pollution Control Agency must certify that the described work will comply with the State's water quality standards and effluent limitations before a Corps permit is issued.

<u>Cultural Resources</u>: The Regulatory Archaeologist has reviewed the latest published version of the <u>National Register of Historic Places</u>, state lists of properties determined eligible, and other sources of information. The following is current knowledge of the presence or absence of historic properties and the effects of the proposed undertaking upon these properties: the permit area is composed (entirely) of low-lying wetlands with no existing or subsided natural levee landforms and therefore, has a low potential for yielding unidentified cultural deposits that may be eligible for the National Register of Historic Places.

<u>Endangered Species</u>: Our initial finding is that the proposed work would have no effect on the following threatened and endangered species or their critical habitats: lvory-billed woodpecker.

<u>Floodplain</u>: In accordance with 44 CFR Part 60 (Floodplain Management and Use), participating communities are required to review all proposed development to determine if a floodplain development permit is required. Floodplain administrators should review the proposed development described in this public notice and apprise this office of any flood plain development permit requirements. The project is completely inside of the 100 year floodplain.

<u>Evaluation Factors</u>: The decision whether or not to issue a permit will be based upon an evaluation of the probable impact of the proposed activity on the public interest. That decision will reflect the national concern for both protection and utilization of important resources. The benefits which may be expected to accrue from the proposal must be balanced against its expected adverse effects. All factors which may be relevant to the proposal will be considered; among these are conservation, economics, aesthetics, general environmental concerns, historic values, fish and wildlife values, flood damage prevention, land use classification, navigation, recreation, water supply, water quality, energy needs, safety, food requirements and, in general, the needs and welfare of the people. Evaluation of the proposed activity will include application of the guidelines published by the Environmental Protection Agency under authority of Section 404(b) of the Clean Water Act.

<u>Public Involvement</u>: The purpose of this notice is to solicit comments from the public; Federal, State, and local agencies and officials; Indian Tribes; and other interested parties. These comments will be used to evaluate the impacts of this project. All comments will be considered and used to help determine whether to issue the permit, deny the permit, or issue the permit with conditions, and to help us determine the amount and type of mitigation necessary. This information will be used in our Environmental Assessment or Impact Statement. Comments are also used to determine the need for a public hearing.


<u>Opportunity for a Public Hearing</u>: Any person may make a written request for a public hearing to consider this permit application. This request must be submitted by the public notice expiration date and must clearly state why a hearing is necessary. Failure of any agency or individual to comment on this notice will be interpreted to mean that there is no objection to the proposed work. Please bring this announcement to the attention of anyone you know who might be interested in this matter.

<u>Notification of Final Permit Actions</u>: Each month, the final permit actions from the preceding month are published on the Vicksburg District Regulatory web page. To access this information, you may follow the link from the Regulatory web page, <u>http://www.mvk.usace.army.mil/Missions/Regulatory.aspx</u>.

Thomas A. M. Cale

Thomas A. McCabe Chief, Evaluation Section Regulatory Branch

MVK-2017-883

NEW 1 EN OM 18

•

AR-ENG-WME-436DS July 2010

Operator :	0	Farm #:	0
Designed By :	0	Truct # :	0
Designed Checked By :	0	Date :	June 4, 2018
Designed Approved By :	0	Contract #:	0

0.---

		Daste	Output I				Input Data		
	608	Emb CuYds					Conventional	e of Survey Data	Тур
	181	rench CuYds	Core T				1	Structure #	
	0	Berm CuYds					99	Emb Top Elev	
	789	Cubic Yards	Total				97	ater Surface Elev	W
	350	b Length (Ft)	Em				3 1	Front Side Slope	Emb
	2	Cu Yds Ft					2.1	Back Side Slope	Emb
	25 ft	It Height (Ft)	Avg Fi				10 8	Emb Top Width	
	35 ft	II Height (Ft)	Max Fi		1 ft	Sump Width H	5 ft	ore Trench Width	Co
	05ft	c Depth (Ft)	Avg Storag		1 ft	Sump Width T	2 ft	ore Trench Depth	Co
	0	servoir (Hrs)	Tume to Fill Re		1 ft	Sump Length B	1.1	ench Side Slopes	Core Tr
Recommen	00	rvoer (Days)	fine to Fill Resea		1 ft	Sump Length T		Bern Width	
	INUM	servoir (Hrs)	me To Empty Re	Tu	1.8	Sump Depth		Berm Elev	
Recommen	INUM!	rvoir (Days)	e To Empty Rese	Turr		_	5	Construction (%)	Shrinkage for
	1,8	servoir -AcFt	Storage This Re				4 80	urface Area (Ac)	Reservoir S
	8.2	Area - Acres	Seeding				0 gpm	Capacity (gpm)	Res Fill Pump (
		-		slopes.	to I percent	Stuttgart ailt loam, 0	AROOI 23A	ry Soil for Levee	Prima
						Baserveir D			
	Empty	Time To	Flow (GPM)	Flow (GPM)	Length of		of	Type	Pipe
	- Days	Reservoir	1/2 Full	Full	Pipe (H1)	Size		Pupe	2
		INUM	#NUM!	INUM	30 ft	15 m	hpe	Steel P	1
		ANUM	ENUM	IIINUSM!	30 ft	15 m	tipe	Steel P	2
		0.0	0	0					0
	THE REAL PROPERTY AND INC.	d upon upon me	of pipes are base	Note The flow		e Only	Drain Pipe Gal	Reservelr	
	ed	tlet not submerg	ugh emb and out	slope of pipe thre			of	Type	Gate
	for	Data above is f	servour in Output	Time to empty re	(m	Size		Gata	#
	rvoir	me to empty read	a same time In	ALL prpes open a	0	0 in	64	No Ge	1
	h	e is time for eac	dy above this not	in box unmodiate					0
			empty reservoir	indiviual pipe to					0
									Notes

NEW URR ENG

	Farm Plan for :				Farm #:		-
	System # :				Tract # :		-
	Designed By :				Date :	June 4, 2018	
Natar Surface	98.5 Desi mergam	-	₹ /		- 985 E	mergency Specy Elev	
			50.0	# F/C			
		PERMON		1		Enter Riser Pipe Dia (in)	
			and Physics and			Calculated Flow Ocfs	
Entrated	Mathend for Oafs						
	Method for Qcfs	Constal-Cultiv			Note Onfine Flow		1
	Drainage Acres	9	10		Note Orifice Flow	v is controlling	
Enter	Drainage Acres Design Qcfs	9			Note Orifice Flow Head over Riser is	v is controlling	
Enter	Drainage Acres Design Qcfs at Data for Design	4) (1)				v is controlling	
Enter	Drainage Acres Design Qcfs at Data for Design Select Practice	9 In Water Cantrol-1			Head over Riser is	v is controlling s Adequate	
Enter	Drainage Acres Design Qcfs at Data for Design Select Practice Structure #	Mater Cantool-1 3 & 2			Head over Riser is	v is controlling) 15
Enter	Drainage Acres Design Qcfs at Data for Design Select Practice Structure # fop of Emb Elev	Writer Cantool- 3 & 2 99 0			Head over Riser is	w is controlling 5 Adequate Enter Conduit Pipe Dia (in)	15
Enter	Drainage Acres Design Qcfs at Data for Design Select Practice Structure #	9 Water Cantool- 1 & 2 99 0 98 5			Head over Riser is Note: Orafice He	v is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated Flow Qefs	
Enter	Drainage Acres Design Qcfs at Data for Design Select Practice Structure # fop of Emb Elev Em Spwy Elev iter Surface Elev	Writer Cantool- 3 & 2 99 0			Head over Riser is Note: Orifice Fil- increasing inlet h	v is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated How Qefs ow is controlling. Consider) 15 E
Enter Inp Wa	Drainage Acres Design Qcfs at Data for Design Select Practice Structure # fop of Emb Elev Em Spwy Elev	9 Water Cantool- 1 & 2 99 0 94 5 98 5			Head over Riser is Note: Orifice Fil- increasing inlet h	v is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated How Qefs we is unatrolling. Consider) 15 E
Enter Inp I Wa	Drunage Acres Design Qcfs ut Data for Design Select Practice Structure # fop of Emb Elev Em Spwy Elev Iter Surface Elev Drop Inlet Elev	9 8 Writer Cantool- 1 & 2 99 0 9% 5 9% 5 9% 5 9% 5 9% 5			Head over Riser is Note: Orifice Fil- increasing inlet h	v is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated How Qefs we is unatrolling. Consider) 15 E
Enter Inp I Wa	Drainage Acres Design Qcfs at Deta for Design Select Practice Structure # lop of Emb Elev Em Spwy Elev ter Surface Elev Drop Inlet Elev onduit Inlet Elev dait Outlet Elev	9 1 & 2 99 0 98 5 98 5 95.6 94.0			Head over Riser is Note: Orifice Fil- increasing inlet h	v is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated Flow Qcfs ore is controlling. Consider sead, using pipe with great aduit gradient is too steep.) 15 E
Enter Inp Wa C Cor	Drainage Acres Design Qcfs at Data for Deaj Select Practice Structure # fop of Emb Elev Em Spwy Elev ter Surface Elev Drop Inlet Elev Dati Inlet Elev aduit Outlet Elev Tailwater Elev	9 1 & 2 99 0 98 5 98 5 95.6 94.0			Head over Riser is Note: Orifice File Increasing inlet h "a" value, or con	w is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated Flow Qcfs ow is controlling. Consider nead, using pipe with great aduit gradient is too strep. Flow Through Structure	list ler
Enter Inp Wa Cor Lgth	Dranage Acres Design Qcfs at Data for Deal Select Practice Structure # Gop of Emb Elec Em Spwy Elec Drop Inlet Elec Drop Inlet Elec aduit Outlet Flec of Conduit Pipe	9 Wetter Cantrol- 1 & 2 99 0 94 5 98 5 95 6 94 0 93 0 93 0 30			Head over Riser is Note: Orifice File Increasing inlet h "a" value, or con	v is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated How Qefs ow is unatrolling. Conside- sed, using pipe with great aduit gradient is too strep. Flow Through Structure 12 ch	list ler
Enter Imp Wa C Cor Lgth So	Drainage Acres Design Qcfs at Data for Deaj Select Practice Structure # fop of Emb Elev Em Spwy Elev ter Surface Elev Drop Inlet Elev Dati Inlet Elev aduit Outlet Elev Tailwater Elev	9 Writer Canthol- 1 & 2 99 0 98 5 98 5 98 5 95 6 94 0 93 0 30 80 psi PVC			Head over Riser is Note: Orifice File Increasing inlet h "a" value, or con	v is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated How Qefs ow is unatrolling. Conside- sed, using pipe with great aduit gradient is too strep. Flow Through Structure 12 ch	list ler
Enter Imp With CC Cor Lighth Set Set	Dranage Acres Design Qcfs ut Data for Deal Select Practice Structure # op of Emb Elev Em Spwy Elev ter Surface Elev Drop Inlet Elev Drop Inlet Elev onduit Dutlet Flev of Conduit Pipe elet Type of Pipe eet Type of Gite	9 Water Cantrol- 1 & 2 99 0 94 5 95 6 94 5 95 6 94 0 93 0 93 0 30 80 psi PVC No Gate	9 11 9D		Head over Riser is Note: Orifice File Increasing inlet h "a" value, or con	v is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated How Qefs ow is unatrolling. Conside- sed, using pipe with great aduit gradient is too strep. Flow Through Structure 12 ch	list ler
Enter Imp With CC Cor Lighth Set Set	Drainage Acres Design Qcfs at Data for Deals Select Practice Structure # fop of Emb Elev Em Surface Elev Drop Indet Elev onduit Inlet Elev onduit Inlet Elev Caulwater Elev Tailwater Elev of Conduit Pipe elet Type of Pipe	9 Water Cantrol- 1 & 2 99 0 94 5 95 6 94 5 95 6 94 0 93 0 93 0 30 80 psi PVC No Gate	PD	8	Head over Riser is Note: Orifice File Increasing inlet h "a" value, or con	v is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated How Qefs ow is unatrolling. Conside- sed, using pipe with great aduit gradient is too strep. Flow Through Structure 12 ch	list ler
Enter Imp With CC Cor Lighth Set Set	Drainage Acres Design Qcfs at Data for Deals Select Practice Structure # fop of Emb Elev Em Spryx Elev Em Surface Elev Drop Indet Elev onduit Indet Elev onduit Indet Elev Onduit Undet Elev Tailwater Elev Tailwater Elev of Conduit Pipe elet Type of Grate	9 Writer Canthol- 1 & 2 99 0 98 5 98 5 98 5 95 6 94 0 93 0 93 0 30 80 psi PVC No Gate	PD PD Length or		Head over Riser is Note: Orifice File Increasing inlet h "a" value, or con	v is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated How Qefs ow is unatrolling. Conside- sed, using pipe with great aduit gradient is too strep. Flow Through Structure 12 ch	list ler
Enter Imp With CC Cor Lighth Set Set	Drainage Acres Design Qcfs at Data for Deail Select Practice Structure # fop of Emb Elev Em Spwy Elev aer Surface Elev Drop Intel Elev Ondunt Intel Elev Induit Outlet Elev Induit Outlet Elev of Conduit Pipe ext Type of Gate Type	9 Weter Contool- 1 & 2 99 0 98 5 98 5 95 6 93 0 93 0 30 80 psi PVC No Gate State	PD	Unit	Head over Riser is Note: Orifice File Increasing inlet h "a" value, or con	v is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated How Qefs ow is unatrolling. Conside- sed, using pipe with great aduit gradient is too strep. Flow Through Structure 12 ch	list ler
Enter Inp Wa C Cor Legth Set	Drainage Acres Design Qcfs at Data for Design Select Practice Structure # fop of Emb Elev Em Spryx Elev Em Surface Elev Drop Indet Elev conduit Indet Elev conduit Indet Elev Conduit Indet Elev Conduit Nutlet Elev Tailwater Elev Tailwater Elev for Conduit Pipe elet Type of Grate	9 Writer Canthol- 1 & 2 99 0 98 5 98 5 98 5 95 6 94 0 93 0 93 0 30 80 psi PVC No Gate	PD PD Length or		Head over Riser is Note: Orifice File Increasing inlet h "a" value, or con	v is controlling s Adequate Enter Conduit Pipe Dia (in) Calculated How Qefs ow is unatrolling. Conside- sed, using pipe with great aduit gradient is too strep. Flow Through Structure 12 ch	list ler

1

Water Control in Grade Stabilization Structure Pipe Drop